SQL

IN A NUTSHELL

Third Edition

Kevin E. Kline

with Daniel Kline and Brand 1Tuni

O'REILLY*®

Bespng * Cambridge * Farmham + Kiln « Sebastopol « Taipei « Tokyo

SOL in a Nutshell, Third Edition
Ly Kevin E. Kline witk Duniel Kline 2nd Brund Hunl

Copyriphr &2 2000 O'Rally Medii, Inc. AT niphrs resenvad.

Printed in the United States ol Anenca

Fablished hy CVReilh Medaa, Ine., 1008 Cravensrein Thghway Nerh, Sehastopal, CA 93470
O Reilly bovks may be purchiused lor educativasl. busiress, or sabes promotiomal use. Caline

alinars are alan avalahle b micsr nries fmafartorsdly.com). Tor mare infarmarion, cantacr
var corpuoraledinsiitulonal sibes depariment: (B0 $98 Y958 or corporategiuraly.com.

Editors: Jube Steels and Mary Treseler Production Services: ezl Fahlishing, Inc.
Production Editor: Rachel Monaghan Cover Designer: Karen Monigomery
Copyaditor: Rachke Vlead Interior Designer: Thaviad Maram

Indexer: Anpela Hlowand llustrator: Jeszaryn Read

Printing History:

Jarary 2001: Firar Tdinen.,
Sepremnber 2004 Second Edilion.
Navember 2006: Thind Dedinen.

Nurshell Tandbaak, the Nurdhell Tlandbaak fap, and the $VReifly ege are registensd
trademiarks of O'Reilly Media, linc. Ve Yo a Nuishe!l sedes desggnations, SQL in @ Nutshal,
rhe imape of a chamclonm, and relarad reade diess sre mademarks ob OFReily Media, Ine.

Many of Ue designations wed by manuflucturens und sellers te distinguish Ueir products ane
alaimed as rrademarks, Where these Ssigranars appear in thas baok, and O'Reslly Maods,
Late, was aveare of o Ursdernark caiin, e designations have been peinced in caps or initisl
CADS.

While every precautiva bas been tiken in the preparaton of this book. the pablishier and
anthoss sasme o respanst dibiy for crars ar omuaeans, an far damages renlneg, bom rhe
use of the infonzativa ceatained berein,

w This book wses RepKover? o dusuble and exible Ly Oat binding.

ISEN: 875 J 596 51584 4
IM]

Preface

1.

Table of Contents

SQL History and Implementations

The Relational Model and ANSI SQL
History of the SQL Standard
SQL Dialects

Foundational Concepts

Database Platforms Described in This Book
Categories of Syntax

SQL2003 and Platform-Specific Datatypes
Constraints

SQL Statement Command Reference

How to Use This Chapter
SQL Platform Support
SQL Command Reference

SQLFunctions

Types of Functions

ANSI SQL Aggregate Functions
ANSI SQL Window Functions
ANSI SQL Scalar Functions
Platform-Specific Extensions

10
14

........... 16

16
17
29
50

........... 59

59
60
63

437
438
455
463
483

iv | Tableof Contents

Preface

Since its first incarnation in the 1970s, the Structured Query Language (SQL) has
been developed hand in hand with the information boom, and as a result, it is the
most widely used database manipulation language in business and industry. A
number of different software companies and program developers, including those
in the open source movement (http://www.opensource.org), have concurrently
developed their own SQL dialects in response to specific professional needs. All
the while, standards bodies have developed a growing list of common features.

SQL in a Nutshell, Third Edition, describes the latest ANSI standard, SQL2003
(SQL3) version of each SQL command, and then documents each platform’s
implementation of that command. In this book, you will find a concise explana-
tion of the relational database management system (RDBMS) model, a clear-cut
explanation of foundational RDBMS concepts, and thorough coverage of SQL
syntax and commands.

Most importantly, at least if you’re a programmer or developer, SQL in a Nutshell,
Third Edition, provides a concise guide both to the most popular commercial
database packages on the market (Microsoft SQL Server and Oracle). It is also the
guide for two of the best-known open source database products (MySQL and
PostgreSQL). The attention this book pays to open source SQL platforms recog-
nizes the growing importance of the open source movement within the computing
community.

The SQL syntax covered in this book includes:
* ANSI SQL2003 (also known as SQL3) standard syntax
* MySQL version 5.1
* Oracle Database 11g
* PostgreSQL version 8.2.1
* Microsoft SQL Server 2008

Why This Book?

The primary source of information for relational databases is the documentation
and help files provided by the vendors themselves. While each vendor’s documen-
tation is an indispensable resource that most database programmers and database
administrators turn to first, this documentation has a number of limitations:

* It describes the vendor’s implementation of SQL without giving you any con-
text as to how well that implementation meets the ANSI standard for SQL.

* It covers only a single, specific vendor’s product. There is no coverage of
translation, migration, or integration issues.

* It typically describes programming methods in a multitude of small, discon-
nected documents or help files.

* It covers individual commands, often in confusing detail, obscuring the sim-
ple and direct uses of commands that programmers and administrators use
every day.

In other words, the documentation included with a vendor’s database provides an
exhaustive explanation of every aspect of that particular vendor’s platform. This is
only natural; after all, help texts are geared toward delivering the main facts about
a product. They’ll tell you a command’s specific syntax (and all its obscure vari-
ants) and, in general terms, how to implement it. However, if you move between
RDBMSs and you need to be productive very quickly, you will rarely use those
obscure command variations; instead, you’ll utilize the capabilities most common
in real-life situations.

This book begins where the vendor documentation ends by distilling the experi-
ences of professional database administrators and developers who have used these
SQL variants day in and day out to support complex enterprise applications. It
offers you the benefit of their experience in a compact and easily usable format.
Whether SQL is new to you or you have been using SQL since its earliest days,
there are always new tips and techniques to learn. And when you’re moving
between different implementations, it’s always important to find out about the
issues that can bite you if you’re not careful and informed.

Who Should Read This Book?

SQL in a Nutshell, Third Edition, benefits several groups of users. It will be useful
for programmers who require a concise and handy SQL reference tool; for devel-
opers who need to migrate from one SQL dialect to another; and for database
administrators (DBAs) who need to both execute a myriad of SQL statements to
keep their enterprise databases up and running, and create and manage objects
such as tables, indexes, and views.

This book is a reference work, not a tutorial. The writing is not expository. For
example, we won’t explain the concept of an elementary loop. Experienced devel-
opers already know such things—you want the meat. So we will explain, for
example, the detailed workings of an ANSI standard cursor, how it works on each
of the database platforms we cover, the special capabilities of cursors on each
database platform, and the various pitfalls of cursors and how to get around them.

vi | Preface

While we don’t intend for SQL in a Nutshell, Third Edition, to be a tutorial on
SQL or a handbook for database design, we do provide some brief coverage of
introductory topics, and we hope you’ll find that helpful. Chapter 1 and
Chapter 2 provide a concise introduction to SQL, covering the general origins,
essential structure, and basic operation of the language. If you're new to SQL,
these chapters will help you get started.

How This Book Is Organized

SQL in a Nutshell, Third Edition, is divided into four chapters and one appendix:

Chapter 1, SQL History and Implementations
Discusses the relational database model, describes the current and previous
SQL standards, and introduces the SQL implementations covered in this

book.

Chapter 2, Foundational Concepts
Describes the fundamental concepts necessary for understanding relational
databases and SQL commands.

Chapter 3, SQL Statement Command Reference
Provides an alphabetical command reference to SQL statements. This chapter
details the latest ANSI standard (SQL3) for each command, as well as the
implementation of each command by MySQL, Oracle, PostgreSQL, and SQL
Server.

Chapter 4, SQL Functions
Provides an alphabetical reference of the ANSI SQL3 functions, describing
vendor implementations of all SQL3 functions. In addition, this chapter
includes coverage of all platform-specific functions that are unique to each
implementation.

Appendix, Shared and Platform-Specific Keywords
Provides a table of keywords declared in SQL3 and by the different database
platforms. You can use this table to look for words that you should not use
for object or variable names.

How to Use This Book

SQL in a Nutshell, Third Edition, is primarily a command reference. As a conse-
quence, you’ll probably use it to look up a variety of SQL commands and
functions. However, with documentation for the ANSI standard itself plus four
database platforms, the description for each command has the potential to get
very large.

In order to reduce the verbiage describing each command, we compare each plat-
form’s implementation to the SQL3 standard. If the platform supports a clause
described in the SQL3 discussion, we won'’t repeat that clause again.

Generic and transportable examples are provided within the body of each SQL3
command description. Since the SQL3 standard is ahead of most database plat-
forms, examples aren’t provided for elements of the SQL3 commands that are not

Preface | vii

supported by any platform discussed in this book. In addition, more examples are
provided for each database platform that highlight unique extensions and
enhancements, of which there are many.

We recognize that our approach may necessitate jumping from a description of a
platform’s implementation of a command back to the corresponding SQL3
command description. However, we felt that this was better than packing the
book with hundreds of pages of redundant content.

Resources

The following websites provide additional information about the various plat-
forms covered in this book:

MySQL
The corporate resource for MySQL is http://www.mysql.com, and another
good site is http://dev.mysql.com/doc/refman/5.1/en/. A great developer
resource with lots of useful tips is Devshed.com. See http://www.devshed.com/
¢/b/MySQL/ for MySQL-specific information.

PostgreSQL
The home for this open source database is located at http://www.postgresql.org.
In addition to making a great deal of useful information available for down-
load, this site also maintains mailing lists for PostgreSQL users. Another
PostgreSQL site worth investigating is http://www.pgsql.com, which offers
support for commercial customers.

Oracle
Oracle’s cyberspace home is hitp://www.oracle.com. A great resource for hard-
core Oracle users is http://www.oracle.com/technology/. You can also find all
Oracle documentation at http://www.oracle.com/technology/documentation/
index.html. For useful independent information about Oracle, be sure to
check out the Independent Oracle User Group at http://www.ioug.org.

SQL Server
The official Microsoft SQL Server website is http://www.microsoft.com/sql/.
Another good resource is found at the home of the Professional Association
for SQL Server (PASS) at http://www.sqlpass.org.

Changes in the Third Edition

One of the biggest reasons to release a new edition of a technology book is
because the technology has progressed. Since the second edition of this book was
published, the ANSI standard has released one new version and all of the data-
base platforms it covers have delivered at least one major release. Consequently,
our readers want fresh content on the latest versions of SQL in the marketplace
today.

Here are more details about changes in this third edition:

viii | Preface

Reduced footprint
The readership of SQL in a Nutshell, Second Edition, loved its expansive
coverage of all major database platforms. However, maintaining such a huge
amount of content proved to be too difficult for the return on the invest-
ment. Therefore, based upon the results of a large readership survey, we
decided to remove the two least popular database platforms from this
edition: Sybase Adaptive Server and IBM’s DB2 UDB.

Improved organization
The second edition did a great job of presenting everything readers could want
to know about all of the commands and functions available in SQL and the
major database platforms, but that didn’t mean the content was always easy to
find or navigate. We've added better indexes, tables of content, and page
headers and footers so you can navigate much more quickly and effectively.

More examples
It’s impossible to have too many examples. We’ve added to our already large
set of basic examples, including more sample code that highlights the unique
and powerful capabilities of the SQL standard and the extensions offered by
each database platform.

Conventions Used in This Book

This book uses the following typographical conventions:

Constant width
Used to indicate programming syntax, code fragments, and examples.

Constant width italic
Used to indicate variables in code that should be replaced with user-supplied
values.

Constant width bold
Used in code sections to highlight portions of the code.

Italic
Used to introduce new terms, for emphasis, to indicate commands or user-
specified file and directory names, and to indicate variables within text.

Bold
Used to display the names of database objects, such as tables, columns, and
stored procedures.

UPPERCASE ITALIC
Used to indicate SQL keywords when they appear in the text.

& @

.
. Indicates a tip, suggestion, or general note.
as
wh g

Sy

Indicates a warning or caution.

Preface | ix

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you're reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from this
book does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “SQL in a Nutshell, Third
Edition, by Kevin E. Kline with Daniel Kline and Brand Hunt. Copyright 2009
O’Reilly Media, Inc., 978-0-596-51884-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made
mistakes!). We want to hear from you, especially with information that will make
this book better. Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a website for this book, where we’ll list any examples, errata, or plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/9780596518844/

Please help us out by pointing out any typos or syntactical errors that you
encounter. (You can imagine how hard it is to proofread a book covering the
ANSI standard and four separate products.) You may also ask technical questions
or comment on the book by sending an email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see the O’Reilly website:

http:/lwww.oreilly.com

x | Preface

Safari® Books Online

. When you see a Safari® Books Online icon on the cover of your
Sa fa rl favorite technology book, that means the book is available
aomeiz.. online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

We’d like to take a moment to thank a few special individuals at O’Reilly Media.
First, we owe a huge debt of gratitude to Julie Steele, the editor of this third
edition. Julie helped keep our noses to the grindstone and ensured that we
finished what we started. With her helpful and relaxed work style, Julie was
always a pleasure to work with. Thank you for all you’ve done for us!

We also owe a debt to our fine technical reviewers. To Peter Gulutzan (SQL Stan-
dard, from the second edition), Thomas Lockhart (PostgreSQL), Ronald Bradford
(Oracle/MySQL), and Richard Sonnen (Oracle): we owe you a hearty thanks!
Your contributions have greatly improved the accuracy, readability, and value of
this book. Without you, our sections on each of the language extensions would
have been on shaky ground. In addition, we’d like to tip our hat to Peter Gulutzan
and Trudy Pelzer for their book SQL-99 Complete, Really! (R&D), which helped
us understand the ANSI SQL3 standards.

Kevin E. Kline’s Acknowledgments

Many people helped deliver the big, thick book you hold in your hands. This note
expresses our appreciation to those who helped make this book a reality.

First of all, a big thanks to my two awesome coauthors, Dan and Brand. You guys
are amazing and a pleasure to work with. Next, Julie Steele, our editor at O’Reilly
Media, gets a big hug for all of her help. You helped keep us on task and on track.
Thank you!

To all of my colleagues at Quest Software go very big thanks for your support and
encouragement. Christian Hasker, Andy Grant, Heather Eichman, David Gugick,
Billy Bosworth, Douglas Chrystall, David Swanson, Jason Hall, Ariel Weil, and
my many other friends at Quest Software: thank you for making these last six
years with Quest Software such a blast.

Here’s a dedication to my loved ones, Dylan, Emily, Anna, and Katie. You were
my hope and breath and light when it seemed that no hope or breath or light
remained anywhere in the world. Thank you for loving me so completely and so
selflessly. And finally, to Rachel, more precious than jewels and more valuable
than rubies, your love has restored my heart and my faith.

Preface | «xi

Daniel Kline’s Acknowledgments

I'd like to thank my brother, Kevin, for his continued willingness to work with
me; my colleagues at the University of Alaska Anchorage for their suggestions;
and the users of the first two editions of SQL in a Nutshell for their honest feed-
back and useful critiques. We’ve also received some terrific feedback from the
different translators of the first two editions, and I'd like to thank them for their
help as well.

Brand Hunt’s Acknowledgments

To my wife, Michelle: without your continued support and love, I wouldn’t be a
part of this project. I'm appreciative of every moment we’ve shared and of your
forgiveness for my keeping you awake at night with the “tappity-tap-taps”
emanating from the computer.

Thanks also to my parents, Rex and Jackie, the two biggest influences in every-
thing I've ever done correctly—especially those things that frequently take
multiple attempts (like writing!).

A huge thanks to my teammates, Kevin, Daniel, and Jonathan for letting me
participate in this project and exercising so much patience in tutoring a first-time
O’Reilly author. Your professionalism, work ethic, and ability to make the most
tedious tasks fun is so admirable I plan to steal it and adopt it as my own!

Mad props to my friends and colleagues at Rogue Wave Software, ProWorks,
NewCode Technology, and Systems Research and Development, for providing the
ultimate sandbox for refining skills in SQL, databases, business, software develop-
ment, writing, and friendship: Gus Waters, Greg Koerper, Marc Manley, Wendi
Minne, Erin Foley, Elaine Cull, Randall Robinson, Dave Ritter, Edin Zulic, David
Noor, Jim Shur, Chris Mosbrucker, Dan Robin, Mike Faux, Jason Prothero, Tim
Romanowski, Andy Mosbrucker, Jeff Jonas, Jeff Butcher, Charlie Barbour, Steve
Dunham, Brian Macy, and Ze’ev Mehler.

Xii | Preface

SQL History and
Implementations

In the early 1970s, the seminal work of IBM research fellow Dr. E. F. Codd led to
the development of a relational data model product called SEQUEL, or Structured
English Query Language. SEQUEL ultimately became SQL, or Structured Query
Language.

IBM, along with other relational database vendors, wanted a standardized method
for accessing and manipulating data in a relational database. Although IBM was
the first to develop relational database theory, Oracle was first to market the tech-
nology. Over time, SQL proved popular enough in the marketplace to attract the
attention of the American National Standards Institute (ANSI), which released
standards for SQL in 1986, 1989, 1992, 1999, 2003, and 2006. This text covers
the ANSI 2003 standard because the 2006 standard deals with elements of SQL
outside the scope of the commands described in this book. (In essence, the
SQL2006 standard describes how XML would be used in SQL.)

Since 1986, various competing languages have allowed programmers and devel-
opers to access and manipulate relational data. However, few were as easy to learn
or as universally accepted as SQL. Programmers and administrators now have the
benefit of being able to learn a single language that, with minor adjustments, is
applicable to a wide variety of database platforms, applications, and products.

SQL in a Nutshell, Third Edition, provides the syntax for five common implemen-
tations of SQL2003 (SQL3):

e The ANSI SQL standard

* MySQL version 5.1

* Oracle Database 11g

* PostgreSQL version 8.3

* Microsoft’s SQL Server 2008

The Relational Model and ANSI SQL

Relational database management systems (RDBMSs) such as those covered in this
book are the primary engines of information systems worldwide, and particularly
of web applications and distributed client/server computing systems. They enable
a multitude of users to quickly and simultaneously access, create, edit, and manip-
ulate data without impacting other users. They also allow developers to write
useful applications to access their resources and provide administrators with the
capabilities they need to maintain, secure, and optimize organizational data
resources.

An RDBMS is defined as a system whose users view data as a collection of tables
related to each other through common data values. Data is stored in tables, which
are composed of rows and columns. Tables of independent data can be linked (or
related) to one another if they each have unique, identifying columns of data
(called keys) that represent data values held in common. E. F. Codd first described
relational database theory in his landmark paper “A Relational Model of Data for
Large Shared Data Banks,” published in the Communications of the ACM (Associ-
ation for Computing Machinery) in June, 1970. Under Codd’s new relational data
model, data was structured (into tables of rows and columns); manageable using
operations such as selections, projections, and joins; and consistent as the result of
integrity rules such as keys and referential integrity. Codd also articulated rules
that governed how a relational database should be designed. The process for
applying these rules is now known as normalization.

Codd’s Rules for Relational Database Systems

Codd applied rigorous mathematical theories (primarily set theory) to the
management of data, and he compiled a list of criteria a database must meet to be
considered relational. At its core, the relational database concept centers around
storing data in tables. This concept is now so common as to seem trivial; however,
not long ago the goal of designing a system capable of sustaining the relational
model was considered a long shot with limited usefulness.

Following are Codd’s Twelve Principles of Relational Databases:

1. Information is represented logically in tables.
2. Data must be logically accessible by table, primary key, and column.

3. Null values must be uniformly treated as “missing information,” not as empty
strings, blanks, or zeros.

4. Metadata (data about the database) must be stored in the database just as
regular data is.

5. A single language must be able to define data, views, integrity constraints,
authorization, transactions, and data manipulation.

6. Views must show the updates of their base tables and vice versa.

7. A single operation must be available to do each of the following operations:
retrieve data, insert data, update data, or delete data.

8. Batch and end-user operations are logically separate from physical storage
and access methods.

2 | Chapter1: SQL History and Implementations

9 Bawch and cnd-uscr operauons can change the dawabase schema withowt
having 1o recreate i or the applications budlt upon i

10, [nuegny consramts must be avalable and swored in the metadala, o in an
applicacon program.

11. The dacz manisulation language of the relavonal sysiem should nou care
where or how the phyzical dawa is diswibuwed and should not require alier-
auon i the physical dawa is conuraliced or distributed.

1L Any row processing done in the system must obey the same inwegniy nules
and consiraints thas sol-processing operations do.

These prnciples conunue w be the Lumus wst used 1o validawe the “relational”
characiensucs of a dawzbase pladerm: a databazc that does now meet all of these
rades is nes Tully relatonal. While dheze rules do nou apply w applications devel-
opmens, they do deternune whether the database engine iscll can be considered
trwly "relational.” Curvently. most commercial RDBMS praducts pass Codd's wesw
Among the pladonms discussed in SQL in @ Nutshell, Third Eduion, only MySQL
ladded 1o support all of these requirements, and enly then o releases prior w e
onc covered in this book.

Understanding Codd’s principles assists programmers and dewclosers in he
proper development and design ol relauonal daabases (RDBs). The lollowing
soetions dewail how some of these requiremenis are met within SQL using RDBs.

Data structures {rules 1, 2, and 8)

Codd’s rules 1 and 2 stawe that "information is represented logically in wables™ and
that "dawa must be logically accessible by wable. primary key, and column.” 3o, the
process ol defining 3 wable lor 3 relational database does not reguire dal programs
mnstruct the dazbase bow 1o interact with the underiving physical dawa siructures.
Furthermore. SQL logically isolaics the processes ol accessing dawa and physically
maintamning thae dawa, as requeed by rule 8: "bawch and end-uscer operavons are
logically scparawe lrom physical sworage and access methods.”

In the relavonal medel, daa = shown logically as a two-dimenzional table that
describes a single entity (lor cxample, business expenses). Acadenucs reler 1o
1ables as enfities and o columns as atteibures. Tables are composod of rows, or
records (acadomics call vher tuples), and colurnns (callod attribures, sinee cach
column of a 1able describes @ specific auribue ol the entivy). The nwerscction ol 2
rccord and a column provides a single walue. The column or columns whose
valucs uniquely idenudy cach record can act as a priswiry key. These days s
[CpIeseliaElion seems elementary, but i was acwally quite innovauve when iu was
Lrse proposcd.

SQL3 delines 3 whole daa suruciure huerarche beyond zumple wbles, though
1ables are the core data struciure. Relationzl design handles daz on a wable-by-
1able basis. not on & record-by-record basis. This wble-cenwric onentadon is the
heart of set pregrameung. Consequently, almost all SQL command:s operale
much more cllicienuly sgainst seis ol dawe within or across wables than aganst
individual records. Sawd another way, ellective SQL programnung requurcs that
vou think in werms ol sc15 ol data. rather than of individual rows.

The Relational Modeland ANSISOL | 3

v
(=]
1
o~
3
<

~

Figure 1-1 35 a descoipuon of the SQL3 wnninolegy used 1o describe the hicrar-
chical dawa swucwore: used by a relauvonal dawbase: clusterss comain sas ol
catalogs; catalogs contain 301: ol scheinas: schamas conlain seus ol obeces, such as
tabies and views: and rabies arc composed of scus of colurins and records,

AL U 2Ol WO Onf ATress M T SR nd whar s ot grinisons theuwn
1 lhu_.l}mm.;ml";ld!mefu&m.”:lumw.km ozl 0L 5e m
Contaia otie Lok pemri:siars gl e caldog o,

o many
|
Acalaneg 5 uanedy nanad v ol ahene | poare o Orace o Moo) 5 Sy
CATALOGS ' $.y22 AP DO M e RuTebl: With 2 trrm btaee.
many

LA K Iy rarrdset of ekt vakatk 9 2 SLamder Tk k reogy
CLUSTERS ' varperelle o an reldbsicnols mw? pevddact Mosd ng s thee SRS slarabend,

{ontain one
o

I
Lo 1S sraely namd W o AR E ol DR o rd i aghT R T BTy
SCHEMAS whebsg mmustcutanthe BF M'J\m(rd_,.‘ﬂll'b\,.uikhulu{mmhdm abesst ol
Ire orhir appxrsied b e cahavg A scheres b the ssaghaqinaient o 3 dortose

Comtain one
o many
fnatiactic aunigaeh nermed el of das or S0 functian gy Scherms eliects nedade
DBJECTS 'mles,,um.maugmmmr:;m.mmp:mmuunmsm
Ifthe obyjectis n toble or view,
It may contain one or mamy
I
L) 2 d 3 i lual] 2
COLUMMNS I abrm iz e unigedy remed el ol valos el dene: aceufoalisbumals bl miiy,
Comtaim one
o many

Thee identty the setof vekd ad 2lawelde s s for s groenachinn

USER DEFINED
TYPES

Thee eniey fur b rabe thet i vadd and showable sdaes foe s g cobamn. far
RULES and reergin,a myzeck S k.
ASSERTIONS

figure 1-1. SQLF dutaset beraraby

ar example, in 2 Business Expense cable, o column called Expense Date mrighe
show when an expense wis incurred. ach record in che mhle describes o specific
ensity, n this case, eversthing thar malees up o Business expense (when it
hipgmened, hinw moch i cosr, whe incarred che expense, what iowas for, and sooon).

4 | Chapter1: SOL History and Implementations

Each aunbuie of an cxpense—in other words, cach column—is supposed w be
atomic; chau is. cach column is supposed wo contain ene, and only one, valuc. Il s
1able is vonstrucied i which the inerseeuon ol a row and column <an contain
more than one distinet value, one ol SQL's primary design guidclines has been
violated. (Some of e dasbase pladorms dizcussed in thus book do allow you 1o
place more chan one value 1w @ column, via the VARRAY or TABLE dawiypes.)

Rules of behavior are specilicd lor column valucs. Foremwost is thal column values
must share a commen domain, 2euer known as a datatype. For cxample, il he
Expensc_Date licld is detined as having a2 DATE daaawvpe, he value ELMER
should not be placed ino thae lield becavse i s a suring. not a dawe. and e
Expense_Date ficld can conwan only daws. In addidon, SQL3 allows lunther
conwrol ol column values through the applicauon ol coksteaints (discussed in
dewail in Chapier 27 and assertions. A SQL constraint might, Jor instanee. limut
Expense_Date 1o cxpenses [oss than a year old. Additcnally, daa access lor all
individuals and computer processes is controllad at the schema level by an Awtio-
rizationID or wser. Permussions o aceess of modily specilic sews of daa may be
graneed or reswriceod on a per-uscr basis.

SQL databases also cmploy character sets and coflations. Characuer scis are the
"symbols™ or "alphabeis” used by the “language” of the dawa. For example, the
American English characier sc1 docs not conwain the special characier for 2 in
the Spanish charscier sew Collations are sc1s of soning rules that operawe on &
characier sce. A colladon detines how a gven data manipulation operation sons
dawa. For cxample, an Amerxan English characier sev might 5o sorved cither oy
character-order, case-insensitive, of by cluiracter-order, case-sensithve.

The ANSI srandard daes nar say Ao sorrs shanld he done, oniv
Ueat platforoms awast proside comuson collations found in s partica-
lar langnage.

Ir is smpormne m e whie collason yon are asicg when wriring SQI. code
agatnet i datahase placform, as iz can bave o direcr impact er how queries hehave,
anck particularly on the helurdor of the WHERE and ORDER BY clauses of
SELECT sratemenrs. For example, a query that sores data nsing a binary collarion
will rerern disa in 2 very different arder than ane shar sarts dusa using, say, an
Aenerican English collarion.

NULLs {rule 3)

Mass darabases allaw any of their supporred damatypes 1o store NULL varlues.
Inexperienced SOI. progrannmers and developens rend so think of NULL as zem or
hlanle. In Facz, NLUILEL s neither of chese, In 502173, NULL Birerally mezns thas she
value is pnknawm orindererminare. {This aoestion alone wherher NULL shonld
he consudersd unkmonsn o indersrnivare s rhe subject of much acadenic
debare.) This differenriarion enables o darnbase desigoer ro dissnguish herareen
thase entries thar represene & deliberarely placed zere, for exarnple, and those
where eirher the data is nor recorded in the spstem ar s NULL has been explicirly
erirered. As an illnsrration of chis sernanric difference, consider o systen thar
rracks payments, IF a producs has 2 NULL price, rthar does nor mean rhe praduce

The Relational Modeland ANSISOL | S

v
(=]
1
o~
3
<

~

is free; instead, a NULL price indicates that the amount is not known or perhaps
has not yet been determined.

&
5 There is a good deal of differentiation between the database plat-
W 4. forms in terms of how they handle NULL values. This leads to
 #’ some major porting issues between those platforms relating to

NULLs. For example, an empty string (i.e., a NULL string) is
inserted as a NULL value on Oracle. All the other databases cov-
ered in this book permit the insertion of an empty string into VAR-
CHAR and CHAR columns.

One side effect of the indeterminate nature of a NULL value is that it cannot be
used in a calculation or a comparison. Here are a few brief but very important
rules, from the ANSI standard, to remember about the behavior of NULL values
when dealing with NULLs in SQL statements:

¢ A NULL value cannot be inserted into a column defined as NOT NULL.

* NULL values are not equal to each other. It is a frequent mistake to compare
two columns that contain NULL and expect the NULL values to match. (The
proper way to identify a NULL value in a WHERE clause or in a Boolean
expression is to use phrases such as “value IS NULL” and “value IS NOT
NULL”.)

* A column containing a NULL value is ignored in the calculation of aggregate
values such as AVG, SUM, or MAX COUNT.

¢ When columns that contain NULL values are listed in the GROUP BY clause
of a query, the query output contains a single row for NULL values. In
essence, the ANSI standard considers all NULLs found to be in a single
group.

* DISTINCT and ORDER BY clauses, like GROUP BY, also see NULL values
as indistinguishable from each other. With the ORDER BY clause, the ven-
dor is free to choose whether NULL values sort high (first in the result set) or
sort low (last in the result set) by default.

Metadata (rules 4 and 10)

Codd’s fourth rule for relational databases states that data about the database
must be stored in standard tables, just as all other data is. Data that describes the
database itself is called metadata. For example, every time you create a new table
or view in a database, records are created and stored that describe the new table.
Additional records are needed to store any columns, keys, or constraints on the
table. This technique is implemented in most commercial and open source SQL
database products. For example, SQL Server uses what it calls “system tables” to
track all the information about the databases, tables, and database objects in any
given database. It also has “system databases” that keep track of information
about the server on which the database is installed and configured.

6 | Chapter1: SQL History and Implementations

The language {rules 5 and 11}

Codd’s rules do nor require SQL w be usod with a relational dawbase. His rulcs,
particulary rules 3 and 1L, only ssecily how the language should behave when
coupled with a rclavonal daabase. AL one ume SQL competed with other
languages (such a= Digiial's RDO and Fox/PRO) that might have L the relational
bill, but SQL wen out. tor three reasons. Firse, SQL (s a relavely simple, inuw-
tive. English-like langusge that handles mest aspecis ol daia manipuladon.
Second, SQL s sauslyingly high-level. A programmer or database adnunisrawr
(DBAY docs not have 10 spend wme ensuring that dawa is swored in the proper
memory registers of that dawa is cached 1o disk: the dalabase management sysiem
(DEMS) handies that task automatically. Finzally, because ne single vendor owns
SQL, it was adopted acress a number ol pladorms.

Views [rule 6)

A view 15 2 vinal 1adle that doss not exust as & physical reposiiory of data, bu is
instead constructed on the Uy (rom a SELECT stawement whenever thac view is
queried. Views cnable you 1o construct dillercnt representauons ol the same
source data lor a vaniety ol audicnces without having 1o aler the way in which the
data = swored.

Some vendors snppart darahase objecrs called matrrialized views.
Dun't let the sioclarity of weems condese you; waterialiced vicws are
nac mavernes by the same mles as ANST standard views,

Set operations (rules 7 and 12)

Orther darabave manipulasion linguages, such as the vererible Xhase, perform
their darn operations quire. differently from SO These langoages regurive you o
rell rhe program exacsly how to creas che dar, one record ar o rime. Since the
program cyeles doven shroogh a lise of records, performing i logic on one recard
afrer another, this shle of prograrnming s frequently clled row procesdngr or

procedural prograponing.

In zonerase, S0 pregrams nperare an logieal sels of data. Ser theory i< upplied in
almess all SQI. srarenents, inclucing SELECTT, INSERT, PDATY, and DRI
starernents. In effecs, data is selecred from o ser called o “rable.” Uelike the roowe
proxessing style, sel pracessing allows o programmer o tell the darbase <simply
whal is requires, nes how exch individual piece of dams sheuld he handled. Some
riines set processing iy referred to s dedarative Froviesving, sinde o progrannner
declires only whar dara i wanred {asin, “Give me all emplovees in the sonthern
region who earm more than $7OOC0 per year®) macher than describving rhe exucr
procedure e be used o rerseve or manipolare the dara.

The Relational Modeland ANSISOL | 7

v
(=]
-
o~
3
<
~

Set theory was the brainchild of mathematician Georg Cantor, who
developed it at the end of the nineteenth century. At the time, set
theory (and Cantor’s theory of the infinite) was quite controversial.
Today, set theory is such a common part of life that it is learned in
elementary school. Things like card catalogs, the Dewey Decimal
System, and alphabetized phone books are all simple and common
examples of applied set theory.

Examples of set theory in conjunction with relational databases are detailed in the
following section.

Codd’s Rules in Action: Simple SELECT Examples

Up to this point, this chapter has focused on the individual aspects of a relational
database platform as defined by Codd and implemented under ANSI SQL. This
section presents a high-level overview of the most important SQL statement,
SELECT, and some of its most salient points—namely, the relational operations
known as projections, selections, and joins:

Projection
Retrieves specific columns of data

Selection

Retrieves specific rows of data
Join

Returns columns and rows from two or more tables in a single result set
Although at first glance it might appear as though the SELECT statement deals

only with the relational selection operation, in actuality, SELECT deals with all
three operations.

The following statement embodies the projection operation by selecting the first
and last names of an author, plus his home state, from the authors table:

SELECT au_fname, au_lname, state
FROM authors

The results from any such SELECT statement are presented as another table of data:

au_fname au_lname state
Johnson White CA
Marjorie Green CA
Cheryl Carson CA
Michael 0'lLeary CA
Meander Smith KS
Morningstar Greene N
Reginald Blotchet-Halls OR
Innes del Castillo MI

The resulting data is sometimes called a result set, work table, or derived table,
differentiating it from the base table in the database that is the target of the
SELECT statement.

8 | Chapter1: SQL History and Implementations

[L is important w note that the relavonal operation ol projocuon, not sclecuon, is
specilied using the SELECT clause (that is, the keyword SELECT lollowed by a
List ol cxpressions to be rewricved; of a SELECT stawcmenit. Seleclion—iae opera-
tien of rewricving specilic rows of daa—is speciliod using the WHERE clavse in a
SELECT swarement. WHERE (Uuers our unwanued rows of data and rewicves only
the requesied rows. Continuing with the previous cxample, the lollowing siaie-
ment selects authors Irom stawcs oder than Calilomia:

SCLECT au_tnawe, su_lnawe, slale
RN aulhozs
WILRE slale <> 'TA°

Whercas the Lest query rewicved all authors, the result of this socond query is a
much smaller subsct ol records:

au_tnse au_lnswe slale
Neande: Sailh K5
Mozningsla: Gruwne ™
Ruginald Blulchel-lalls R
I dul Cavlills NI

By comoming the capabulices of projocton and selccuon in a single quety, you can
use SQL wo rewrieve only dhe columns and rocerds that vou need 3L any given wme.
Jeins are the nex, and Lasy, relational operation we're going to talk about in dhis
scelion. A join relates one wable w another in order w retem a result ot consisung
ol related daia lrom bodh 1ables.

X .

[rfferent vendors allow ¥ou 1o jain varying numbers aof tshles in a
stngle juin eperative. For example. Oracle pleocs oo Loit oo the
% number of rables in ajom, while Miczasarr SQI. Server aliows up
256 whbles in u join uperation.

The ANSI siandard methed of perlorming jeins is 1o use the JOIN clause in 3
SELECT zawemene. An older method. know as a theta join, performs the join
analysis :n the WHERE clausc. The lellowing cxample shows beth appreaches.
Ezach staement rewrieves emplover inormation frem the emplovee sase wble as
well a3 job descripuons from the jobs basc wable. The (irst SELECT uscs the
newer, ANS] JOIN clause, while the second SELECT uses a thea joun:

== MNSI siyle

SCLECT auau tnawe, a.au_lnsee, LoLille id

RN aulhozs A5 4

MIN Lilleagulhoz A5 L O s.90 1d - Losu_id

WICRE a.slale < 'CA'

== Thuls slyls
SCLECT a.au_tnsee, d.3u lnsee, LoLille id
RN sulhuzs A5 4,
Lillegulhioz A5 L
WILRD s au_id - Losu_id
WD aaslale o 'O0

For more information adboul joins. see the "JOIN Subelause™ seeuon in Chapuer 3.

The Relational Modeland ANSISOL | 9

v
(=]
-
o~
3
<

~

History of the SQL Standard

In response to the proliferation of SQL dialects, ANSI published its first SQL stan-
dard in 1986 to bring about greater conformity among vendors. This was followed
by a second, widely adopted standard in 1989. The International Standards Orga-
nization (ISO) also approved the SQL standard. ANSI released one update in
1992, known as SQL92 or SQL2, and another in 1999, termed SQL99 or SQL3.
The next update, made in 2003, is also referred to as SQL3 (or SQL2003). When
we use that term in this book, we are referring to the 2003 revision of the
standard.

Each time it revises the SQL standard, ANSI adds new features and incorporates
new commands and capabilities into the language. For example, the SQL99 stan-
dard added a group of capabilities that handled object-oriented datatype
extensions.

What’s New in SQL2006

The ANSI standards body that regulates SQL issued a new standard in 2006, in
which the important major improvements of SQL3 were retained and augmented.
The ANSI SQL2006 release was evolutionary over the SQL3 release, but it did not
include any significant changes to the SQL3 commands and functions that were
described in the second edition of this book. Instead, SQL2006 described an
entirely new functional area of behavior for the SQL standard. Briefly, SQL2006
describes how SQL and XML (the eXtensible Markup Language) interact. For
example, the SQL2006 standard describes how to import and store XML data in a
SQL database, manipulate that data, and then publish the data both in native
XML form and as conventional SQL data wrapped in XML form. The SQL2006
standard provides a means of integrating SQL application code with XQuery, the
XML Query Language standardized by the World Wide Web Consortium (W3C).
Because XML and XQuery are disciplines in their own right, they are considered
beyond the scope of this book and are not covered here.

What’s New in SQL2003 (SQL3)

SQL99 had two main parts, Foundation:1999 and Bindings:1999. The SQL3 Foun-
dation section includes all of the Foundation and Bindings standards from
SQL99, as well as a new section called Schemata.

The Core requirements of SQL3 did not change from Core SQL99, so the data-
base platforms that conformed to Core SQL99 automatically conform to SQL3.
Although the Core of SQL3 has no additions (except for a few new reserved
words), a number of individual statements and behaviors have been updated or
modified. Because these updates are reflected in the individual syntax descrip-
tions of each statement in Chapter 3, we won’t spend time on them here.

A few elements of the Core in SQL99 were deleted in SQL3, including;:
* The BIT and BIT VARYING datatypes

* The UNION JOIN clause
e The UPDATE...SET ROW statement

10 | Chapter1: SQL History and Implementations

A number of other features. most of wiuch were or are rather obecure, have also
been added, deleted, or renamed. Many of the now teatures of the SQLI siandard
are currently mnteresung mostly (rom an academic standpoint, becavse none of the
databasc pladorms support them yer. Howewer, a fow new leawres hold more
than passing inwcrest:

Elementary OLAP functions

SQL3 adds an Online Anzlyvucal Frocessing [OLAP) amendment, including &
number ol windowing luncuions 1o support widely usod calculations such as
DLoving averages and cumuladve sums. Windowing luncuons are ageregales
compuied over @ window ol data: ROW_NUMBER, RANK, DENSE_RANK,
PERCENT_RANK. and CUME_DIST. OLAF {unctions are (ully desenibed in
Toll of the standard. Some databess pladerms are sianing w support the
OLAF luncuons. Reler o Chaser 1 Lor detatls.

Sampling
SQL3 adds the TABLESAMPLE clavzc w the FROM clauze. This is usclul lor
siatistcal quenes on Jarge dawbases. such as a daa warchouse.

Exhanced numeric functions
SQL3 adds a large number ol numeric tancions. In this case, the standard
was moedy catchung up with the wend in che indusiry, sinee one or more
dawabasc plalorms already supporied the new luncuons. Reler w Chapuer 4
Llor deacls.

Levels of Conformance

SQL9 is buill upen SQLI2's levels of conformance. SQL22 Lrst iwroduced levels
ol contorman<e by deliung chree cawegonies: Entry, Ditermediate. and Full.
Vendors had o achieve at least Enwy-lewel conlormance wo claim ANSI SQL
compliance. The US. Navonal Instwe ol Standards and Tochnology (NIST)
lzter added the Transitiona! level between the Enury and Inermediate levels, so
NIST’s lewels ol conlormance were Enwy. Transiional, Inwermediawe, and Full,
while ANSI's were enly Enury, Intermediate, and Full. Each hugher level ol the
standard was a superset ol the suberdinawe level, meaning that cach higher level
included sl the Leavares of the lower levels ol conformance.

Later, QLSS alwered :he base levels ol conlommance. doing away with the Enury,
Inwermediate, and Full levels, With SQL%, vendors must mmplement all e
Leaures ol the lowest level ol contommance. Core SQL22, in order o claim fand
publish} that they are SQLY9 ready. Core SQLA2 includes the old Enwy SQLOZ
leawure sct, features (rom other SQLI2 levels, and some brand now fcawures. A
vendor may also cheose w implement additonal feature packages deserbed in
the SQL99 siandard.

Supplemental Features Packages in the SQL3 Standard

The SQL3 sandard represenis the sdeal, buc very low vendors currenly meet or
eacead the Core SQL3 roguirements. The Core swandard s like the inwersiawe
speed linut: some drivers go above L and oliers go below iy, but few go cxacily
the speed limin, Similarly, vendor implemerniations can vary greatly.

History of the SQLStandeed | 11

v
(=
(nd
—
3
<

~

Two committees—one within ANSI, the other within ISO, and both composed of
representatives from virtually every RDBMS vendor—drafted the supplemental
feature definitions described in this section. In this collaborative and somewhat
political environment, vendors compromised on exactly which proposed features
and implementations would be incorporated into the new standard.

New features in the ANSI standard often are derived from an existing product or
are the outgrowth of new research and development in the academic community.
Consequently, vendor adoption of specific ANSI standards can be spotty. A rela-
tively new addition to the SQL3 standard is SQL/XML (greatly expanded in
SQL2006.) The other parts of the SQL99 standard remain in SQL3, though their
names may have changed and they may have been slightly rearranged.

The nine supplemental features packages, representing different subsets of
commands, are platform-optional. Some features might show up in multiple pack-
ages, while others do not appear in any of the packages. These packages and their
features are described in the following list:

Part 1, SQL/Framework
Includes common definitions and concepts used throughout the standard.
Defines the way the standard is structured and how the various parts relate to
one another, and describes the conformance requirements set out by the stan-
dards committee.

Part 2, SQL/Foundation
Includes the Core, an augmentation of the SQL99 Core. This is the largest
and most important part of the standard.

Part 3, SQL/CLI (Call-Level Interface)
Defines the call-level interface for dynamically invoking SQL statements from
external application programs. Also includes over 60 routine specifications to
facilitate the development of truly portable shrink-wrapped software.

Part 4, SQL/PSM (Persistent Stored Modules)
Standardizes procedural language constructs similar to those found in data-
base platform-specific SQL dialects such as PL/SQL and Transact-SQL.

Part 9, SQL/MED (Management of External Data)
Defines the management of data located outside of the database platform
using datalinks and a wrapper interface.

Part 10, SQL/OBJ (Object Language Binding)
Describes how to embed SQL statements in Java programs. It is closely
related to JDBC, but offers a few advantages. It is also very different from the
traditional host language binding possible in early versions of the standard.

Part 11, SQL/Schemata
Defines over 85 views (three more than in SQL99) used to describe the meta-
data of each database and stored in a special schema called INFORMATION_
SCHEMA. Updates a number of views that existed in SQL99.

12 | Chapter1: SQL History and Implementations

sample content of SQL in a Nutshell (In a Nutshell (O'Reilly))

e download online The Wolf Worlds (The Sten Chronicles, Book 2)
e Being There: Putting Brain, Body, and World Together Again online

¢ | Remember Nothing: and Other Reflections pdf, azw (kindle

¢ read North River book

¢ read online Twenty Things Adopted Kids Wish Their Adoptive Parents Knew pdf, azw (kindle),
epub, doc, mobi

¢ read online A Guide to Uni Life: The One Stop Guide to What University is REALLY Like pdf,
azw (kindle), epub

e http: //toko qgumilar. com/books/The Wolf- Worlds--The Sten- Chronlcles--Book 2 Ddf

Edltlon- pdf

¢ http://tuscalaural.com/library/Old-Coot-s-Campfire-Cookin--Book.pdf
e http://unpluggedtv.com/lib/Ken-Schultz-s-Essentials-of-Fishing--The-Only-Guide-You-Need-to-

Catch-Freshwater-and-Saltwater-Fish.pdf
e http://deltaphenomics.nl/?library/Oracle-Bones--A-Journey-Through-Time-in-China.pdf

http://toko-gumilar.com/books/The-Wolf-Worlds--The-Sten-Chronicles--Book-2-.pdf
http://www.rap-wallpapers.com/?library/Business-as-Usual--The-Economic-Crisis-and-the-Failure-of-Capitalism.pdf
http://unpluggedtv.com/lib/Wow--I-m-in-Business--A-Crash-Course-in-Business-Basics--2nd-Edition-.pdf
http://tuscalaural.com/library/Old-Coot-s-Campfire-Cookin--Book.pdf
http://unpluggedtv.com/lib/Ken-Schultz-s-Essentials-of-Fishing--The-Only-Guide-You-Need-to-Catch-Freshwater-and-Saltwater-Fish.pdf
http://unpluggedtv.com/lib/Ken-Schultz-s-Essentials-of-Fishing--The-Only-Guide-You-Need-to-Catch-Freshwater-and-Saltwater-Fish.pdf
http://deltaphenomics.nl/?library/Oracle-Bones--A-Journey-Through-Time-in-China.pdf
http://deltaphenomics.nl/?library/Oracle-Bones--A-Journey-Through-Time-in-China.pdf
http://toko-gumilar.com/books/The-Wolf-Worlds--The-Sten-Chronicles--Book-2-.pdf
http://www.rap-wallpapers.com/?library/Business-as-Usual--The-Economic-Crisis-and-the-Failure-of-Capitalism.pdf
http://www.rap-wallpapers.com/?library/Business-as-Usual--The-Economic-Crisis-and-the-Failure-of-Capitalism.pdf
http://unpluggedtv.com/lib/Wow--I-m-in-Business--A-Crash-Course-in-Business-Basics--2nd-Edition-.pdf
http://unpluggedtv.com/lib/Wow--I-m-in-Business--A-Crash-Course-in-Business-Basics--2nd-Edition-.pdf
http://tuscalaural.com/library/Old-Coot-s-Campfire-Cookin--Book.pdf
http://unpluggedtv.com/lib/Ken-Schultz-s-Essentials-of-Fishing--The-Only-Guide-You-Need-to-Catch-Freshwater-and-Saltwater-Fish.pdf
http://unpluggedtv.com/lib/Ken-Schultz-s-Essentials-of-Fishing--The-Only-Guide-You-Need-to-Catch-Freshwater-and-Saltwater-Fish.pdf
http://deltaphenomics.nl/?library/Oracle-Bones--A-Journey-Through-Time-in-China.pdf
http://www.tcpdf.org

